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Outline

• QUBO Formulation for optimization problems

• QUBO Formulation of feature selection and clustering

• Quantum Annealer architecture and minor-embedding
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Using a Quantum Annealer in practice
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1. Formulate the problem as QUBO

2. Compile it (minor-embedding)

3. Run the annealing process

4. Measure the final state of the qubits

5. Repeat as needed (sampling of solutions)

6. Apply postprocessing on a traditional computer if needed



QUBO Formulation



QUBO Formulation

• Quadratic: The problem must be at most quadratic

• Unconstrained: No hard constraints (soft constraints with a penalty term)

• Binary: Variables are binary (real and categorical require a workaround)

• Optimization: Represents optimization problems (NP-Complete, NP-Hard)
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QUBO Formulation

Where:

• 𝑛 is the problem size

• 𝑥 ∈ 0,1 𝑛 are the binary problem variables

• 𝑄 ∈ 𝑅𝑛×𝑛 is the matrix of coefficients (upper triangular or symmetric) 

Notice that 𝑥𝑖
2 = 𝑥𝑖

min
𝑥

𝑦 = 𝑥𝑄𝑥𝑇 𝑦 = 

𝑖

𝑞𝑖,𝑖𝑥𝑖 + 

𝑖>𝑗

𝑞𝑖,𝑗 𝑥𝑖𝑥𝑗

Linear
diagonal of Q

Quadratic
off-diagonal of Q
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QUBO Formulation

• Advantages
The formulation is simple and very general, so it can be used for NP-
complete and many NP-hard optimization problems.
An effective QUBO solver can impact many tasks.

• Disadvantages
The formulation hides the specific structure of the problem, which is
usually what one leverages to develop highly effective solvers for particular
classes of problems or structures.
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Simple QUBO example 𝑎 ≠ 𝑏

Suppose we want to find the value of two variables 𝑎, 𝑏 such that the
Boolean function 𝑎 ≠ 𝑏 is True.

𝑎 𝑏 𝑎 ≠ 𝑏

0 0 0

0 1 1

1 0 1

1 1 0
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Simple QUBO example 𝑎 ≠ 𝑏

First, we need to transform this into a minimization problem. We define our
cost y so that the lowest value, 0, corresponds to the variable assignments that
satisfy the Boolean function. We set 1 to all the others.

𝑎 𝑏 𝑎 ≠ 𝑏 y

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1
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Simple QUBO example 𝑎 ≠ 𝑏

Then, we need to describe 𝑦 as a function 𝑦 𝑎, 𝑏  of our problem variables
𝑎, 𝑏. In this example we can proceed iteratively starting from the simplest
case.

𝑎 𝑏 𝑎 ≠ 𝑏 y 𝑦 𝑎, 𝑏 = ?

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1
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Simple QUBO example 𝑎 ≠ 𝑏

Then, we need to describe 𝑦 as a function 𝑦 𝑎, 𝑏  of our problem variables
𝑎, 𝑏. In this example we can proceed iteratively starting from the simplest
case.

𝑎 𝑏 𝑎 ≠ 𝑏 y 𝑦 𝑎, 𝑏 = ?

0 0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 1
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Simple QUBO example 𝑎 ≠ 𝑏

Then, we need to describe 𝑦 as a function 𝑦 𝑎, 𝑏  of our problem variables
𝑎, 𝑏. In this example we can proceed iteratively starting from the simplest
case.

𝑎 𝑏 𝑎 ≠ 𝑏 y 𝑦 𝑎, 𝑏 = ?

0 0 0 1 1

0 1 1 0
1 − a − b

1 0 1 0

1 1 0 1
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Simple QUBO example 𝑎 ≠ 𝑏

Then, we need to describe 𝑦 as a function 𝑦 𝑎, 𝑏  of our problem variables
𝑎, 𝑏. In this example we can proceed iteratively starting from the simplest
case.

The final formulation is: 𝑦 𝑎, 𝑏 = 1 − a − b + 2ab

𝑎 𝑏 𝑎 ≠ 𝑏 y 𝑦 𝑎, 𝑏 = ?

0 0 0 1 1

0 1 1 0
1 − a − b

1 0 1 0

1 1 0 1 1 − a − b + 2ab
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Simple QUBO example 𝑎 == 𝑏

This is another example in which we want to find the values of 𝑎, 𝑏 such that
𝑎 == 𝑏. Again, we represent it as a minimization problem:

𝑎 𝑏 𝑎 == 𝑏

0 0 1

0 1 0

1 0 0

1 1 1
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Simple QUBO example 𝑎 == 𝑏

This is another example in which we want to find the values of 𝑎, 𝑏 such that
𝑎 == 𝑏. Again, we represent it as a minimization problem:

𝑎 𝑏 𝑎 == 𝑏 y

0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 0
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Simple QUBO example 𝑎 == 𝑏

This is another example in which we want to find the values of 𝑎, 𝑏 such that
𝑎 == 𝑏. Again, we represent it as a minimization problem:

The final formulation is: 𝑦 𝑎, 𝑏 = a + b − 2ab

𝑎 𝑏 𝑎 == 𝑏 y 𝑦 𝑎, 𝑏 = ?

0 0 1 0 0

0 1 0 1
a + b

1 0 0 1

1 1 1 0 a + b − 2ab
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What if the problem is not quadratic?

• Sometimes you can reformulate the problem in an equivalent quadratic
formulation or approximate the non-quadratic functions into quadratic ones.
Beware of introducing too many approximations.

• If the problem is binary but with higher degree polynomials, it is easily
possible to convert it into one that is quadratic:

Term QUBO

𝑥1𝑥2𝑥3 𝑥1 + 𝑥2 + 𝑥3 − 2

𝑥1
𝑛, n>2 𝑥1

2 or 𝑥1
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What if the variables are not Boolean?

Categorical variables: If your problem has variables which are defined on a
set of values, say 𝑥 ∈ 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 , you can use one hot-encoded binary
variable per value. A constraint is needed to ensure exactly one is selected.

Continuous variables: Can be approximated with binary expansion:

𝑟𝑖 = 

𝑒=−2

+2

2𝑒𝑥𝑖 =
1

4
𝑥1 +

1

2
𝑥2 + 𝑥3 + 2𝑥4 + 4𝑥5

Using and Evaluating Quantum Computing for IR and RS                                      
Maurizio Ferrari Dacrema 18SIGIR 2024



How to add constraints in QUBO

QUBO is a formulation for “unconstrained” problems, meaning we cannot set a

hard constraint on the variables.

Workaround: introduce a penalty that will be a positive number for the states

that violate the constraints and zero otherwise. Note that the solver might still

find unfeasible solutions, you should always check their feasibility.

min
𝑥

𝑦 = 𝑥𝑄𝑥𝑇 + 𝛾 ∙ penalty(𝑥)
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Common penalty terms
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Constraint Penalty

𝑥1 + 𝑥2 ≤ 1 𝑥1𝑥2

𝑥1 + 𝑥2 ≥ 1 1 − 𝑥1 − 𝑥2 + 𝑥1𝑥2

𝑥1 + 𝑥2 = 1 1 − 𝑥1 − 𝑥2 + 2𝑥1𝑥2

𝑥1 ≤ 𝑥2 𝑥1 − 𝑥1𝑥2

𝑥1 = 𝑥2 𝑥1 + 𝑥2 − 2𝑥1𝑥2

𝑥1 + 𝑥2 + 𝑥3 ≤ 1 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3



Common penalty terms
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Constraint Penalty

𝑥1 + 𝑥2 ≤ 1 𝑥1𝑥2

𝑥1 + 𝑥2 ≥ 1 1 − 𝑥1 − 𝑥2 + 𝑥1𝑥2

𝑥1 + 𝑥2 = 1 1 − 𝑥1 − 𝑥2 + 2𝑥1𝑥2

𝑥1 ≤ 𝑥2 𝑥1 − 𝑥1𝑥2

𝑥1 = 𝑥2 𝑥1 + 𝑥2 − 2𝑥1𝑥2

𝑥1 + 𝑥2 + 𝑥3 ≤ 1 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3

Looks 
familiar? 



Penalty weight

The penalty weight 𝛾 is a hyperparameter, you can change it and see how it

affects the results. Different constraints may require different penalties.

If the penalty is too low it may lead to the selection of unfeasible solutions, if it

is too high it may overwhelm the problem and lead to worse effectiveness.

A good starting point is the expected best value of the cost function.
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From a general problem to QUBO

A general procedure to transform a generic (linear or quadratic) optimization
problem in binary variables and real coefficients as QUBO:

min
𝑥

𝑦 = 𝑥𝐶𝑥𝑇

subject to 𝐴𝑥 = 𝑏, 𝑥 ∈ 0,1 𝑛

Simply convert the constraints into quadratic penalties:

min
𝑥

𝑦 = 𝑥𝐶𝑥𝑇 + 𝛾 𝐴𝑥 − 𝑏 𝑇 𝐴𝑥 − 𝑏
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List of QUBO formulations

The following are two references which contain the formulation of many NP-
Complete and NP-Hard optimization problems both as QUBO or as the
equivalent Ising formulation:

• Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, 2, 5.

• Glover, F., Kochenberger, G., & Du, Y. (2019). Quantum Bridge Analytics I: a tutorial on
formulating and using QUBO models. 4OR, 17(4), 335-371.
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Feature Selection and Clustering



Feature selection

A good feature selection may help you reduce the computational cost of a
learning algorithm trained on the data and may improve its effectiveness by
removing noise.

We can write feature selection as a quadratic optimization problem.
Each feature will be associated to a binary variable, if 𝑥𝑖 = 1 then feature 𝑖 will
be selected, otherwise it will not.

M. Ferrari Dacrema, F. Moroni, R. Nembrini, N. Ferro, G. Faggioli, and P. Cremonesi. Towards Feature Selection for
Ranking and Classification Exploiting Quantum Annealers. In Proceedings of SIGIR 2022.

SIGIR 2024 Using and Evaluating Quantum Computing for IR and RS                                      
Maurizio Ferrari Dacrema 26



Underlying idea

We want to select a subset of features that are:

• As informative as possible on what we want to predict or classify

• Not overlapping, avoid those that are redundant

This can be done by selecting the subset that maximizes a certain information

measure. Finding the optimal subset is a combinatorial problem and becomes

intractable but several heuristic methods are available.
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QUBO Correlation

A simple strategy is to select features based on their correlations. The idea
being to select features correlated with the target label and discarding those
that are correlated with each other:

𝑄𝑖𝑗 = ൝
−𝑟 𝑓𝑖 , 𝑡 𝑖𝑓 𝑖 = 𝑗

𝑟 𝑓𝑖 , 𝑓𝑗 𝑖𝑓 𝑖 ≠ 𝑗

Where 𝑟 ∙,∙ is the Pearson Correlation, but other ones can be used.
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MIQUBO: MI Feature Selection as QUBO

MIQUBO is a similar approach that uses Mutual Information (MI), which is
based on the Shannon Entropy of the two features:

𝑄𝑖𝑗 = ቐ
−𝑀𝐼 𝑓𝑖 , 𝑡 𝑖𝑓 𝑖 = 𝑗

−𝑀𝐼 𝑓𝑖 , 𝑡 ቚ𝑓𝑗 𝑖𝑓 𝑖 ≠ 𝑗

Where 𝑀𝐼 𝑓𝑖 , 𝑡 is the MI between feature 𝑓𝑖 and target variable, 𝑀𝐼 𝑓𝑖 , 𝑡 ቚ𝑓𝑗 is
the conditional MI between feature 𝑓𝑖 and the target, given 𝑓𝑗 .
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Restricting the number of features

Since in MIQUBO all terms of the Q matrix are negative, the best solution is 

always obtained selecting all the features.

Solution: Introduce a penalty term to force the selection of exactly k features. 

min
𝑥

𝑦 = 𝑥𝑄𝑥𝑇 + 

𝑖=1

𝑛

𝑥𝑖 − 𝑘

2
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Clustering with Binary Partitioning

One of the simplest forms of clustering is to partition a graph in two clusters.

• Nodes within a cluster are highly connected

• Nodes in different clusters are sparsely connected

• A penalty balances the cluster sizes

Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski. 2017. Graph Partitioning using Quantum 

Annealing on the D-Wave System. In Proceedings of PMES'17

SIGIR 2024 Using and Evaluating Quantum Computing for IR and RS                                      
Maurizio Ferrari Dacrema 31



Clustering with Binary Partitioning

Consider a graph 𝐺 = 𝑉, 𝐸 which we want to partition in two sets.

The objective is to minimize the number of cut edges (edges between nodes in 
different sets) and balance the set size. 

Each node will be associated to a binary variable, if True the node will belong to 
one set, otherwise to the other. The problem will have 𝑉 variables:

𝑥𝑖 = ቊ
1 if node 𝑖 is in the first set
0 otherwise 
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Clustering with Binary Partitioning

Since we want to minimize the number of edges traversing the cut, we can write
the optimization problem based on the couples of nodes connected by an
edge. If the two nodes belong to different sets, we increase our cost function:

min
𝑥



𝑖,𝑗 ∈𝑉

𝑥𝑖 + 𝑥𝑗 − 2 𝑥𝑖𝑥𝑗
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𝑥𝑖 𝑥𝑗 𝑐𝑢𝑡(𝑥𝑖 , 𝑥𝑗)

0 0 0

0 1 1

1 0 1

1 1 0



Clustering with Binary Partitioning

Since we want to minimize the number of edges traversing the cut, we can write
the optimization problem based on the couples of nodes connected by an
edge. If the two nodes belong to different sets, we increase our cost function:

min
𝑥



𝑖,𝑗 ∈𝑉

𝑥𝑖 + 𝑥𝑗 − 2 𝑥𝑖𝑥𝑗
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𝑥𝑖 𝑥𝑗 𝑐𝑢𝑡(𝑥𝑖 , 𝑥𝑗)

0 0 0

0 1 1

1 0 1

1 1 0 Looks 
familiar? 



Clustering with Binary Partitioning

The second requirement of Binary Partitioning is that the nodes are split evenly
in the two sets, so we can add a penalty term that will be zero when the nodes
are split evenly. The final optimization problem becomes:

min
𝑥



𝑖,𝑗 ∈𝑉

𝑥𝑖 + 𝑥𝑗 − 2 𝑥𝑖𝑥𝑗 + 𝛾 

𝑖∈𝑁

𝑥𝑖 −
𝑁

2

2
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Clustering with k-medoids

K-medoids is similar to k-means, but ensures that the centroid of a cluster is
among the data points. The idea is as follows, each binary variable represents a
data point, if the variable is True, then the data point is a medoid (the center of
a cluster), otherwise it is not.

The optimization problem has two components:
• One that selects points that are distant
• One that selects points that are central
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Clustering with k-medoids

min
𝑥



𝑖,𝑗

𝑁

𝑥𝑖𝑥𝑗 𝛾 −
1

2
𝛼∆𝑖𝑗 − 2𝛾𝑘 

𝑖

𝑁

𝑥𝑖 + 

𝑖,𝑗

𝑁

𝛾𝑥𝑖𝑥𝑗 + 

𝑖

𝑁

𝑥𝑖 

𝑗

𝑁

𝛽∆𝑖𝑗 − 2𝛾𝑘

Where:
• 𝑁 is the number of data points, 𝑘 is the number of medoids
• 𝛼, 𝛽, 𝛾 are weights that can be chosen heuristically

• ∆𝑖𝑗 is a function of the distance between point 𝑖 and 𝑗
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Clustering with k-medoids

Note that this method only identifies which data points are the medoids.

It is possible to allocate a data point to a cluster by choosing the cluster
associated to the medoid that has the lowest distance, ∆𝑖𝑗, from it.

The method requires to compute the distances between all couples of points
and is not iterative.
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Quantum Annealer Architecture



D-Wave quantum annealer

Current quantum annealers (D-Wave) are meta-heuristic devices that use

quantum annealing to minimize QUBO problems. I will call them Quantum

Processing Unit (QPU).

They do this by creating a physical system that is equivalent to the QUBO

problem and then guide this physical system towards a state of minimal

energy. The final state of the qubits will correspond to a solution of the QUBO.
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D-Wave quantum annealer

The leading technology is superconducting electronics. In the D-Wave QPU

the qubit is a superconducting ring, the state is the direction of the current.

Magnetic fields can be used to favor the flow in one or the other direction (bias)

and control how easily the current can change its rotation, as well as control

the strength of the interaction between qubits (quadratic terms, coupling).
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Problem connectivity

The QUBO problem formulation allows quadratic terms between all existing 

problem variables, so it can be “fully connected”.

𝑦 = 

𝑖

𝑞𝑖,𝑖𝑥𝑖 + 

𝑖>𝑗

𝑞𝑖,𝑗 𝑥𝑖𝑥𝑗

It is not feasible in practice to build a fully connected structure in a planar 

circuit. Each physical qubit is connected according to a certain topology.
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QPU topology

The D-Wave QPU is based on a physical lattice of qubits and couplers. 

Over the years different architectures have been introduced: Chimera, Pegasus 

and Zephyr.

The Advantage QPU uses the Pegasus topology and contains over 5000 qubits. 

Each is coupled to a maximum of 15 other qubits.
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Chimera topology

The Chimera architecture 

comprises sets of connected unit 

cells, each with 8 qubits. 

Each qubit has 6 couplers.
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Pegasus topology

The Pegasus topology is based on 

the same basic unit cell as 

Chimera, each qubit is 

connected to at most 15 others
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Zephyr topology

The Zephyr topology is the most 

recent topology, which increases 

the connectivity to 20.
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Minor embedding

In order to solve a problem using the QPU we have to ensure its structure fits in

the QPU topology. The process of transforming the original problem in its

abstract formulation to one that can fit on the QPU is called minor embedding.

Minor embedding is itself a NP-Hard problem.

Heuristic algorithms in polynomial time are available.
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Simple embedding example

Say that we want to embed a problem with a triangular graph (variables A, B 
and C) into a square topology.
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Simple embedding example

Say that we want to embed a problem with a triangular graph (variables A, B 
and C) into a square topology.
How do you make them fit?
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Simple embedding example

You duplicate one of your problem variables, in this example A, and represent it
with two physical qubits. This will create a chain of qubits that represent the
same logical variable.

SIGIR 2024 Using and Evaluating Quantum Computing for IR and RS                                      
Maurizio Ferrari Dacrema 50

A

CB

A

CA

B
green-check-mark-icon-png-0 - Scuola Bilingue Roma | Scuole Cefa

https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.scuolecefa.it%2Fwp-content%2Fuploads%2F2019%2F12%2Fgreen-check-mark-icon-png-0.png&imgrefurl=https%3A%2F%2Fwww.scuolecefa.it%2Fiscrizione-lista-open-day-cefa-grazie%2Fgreen-check-mark-icon-png-0%2F&tbnid=-eKSzXwDnz-JEM&vet=12ahUKEwit7qe_p7DvAhWH6qQKHRQ-B6gQMygLegUIARDYAQ..i&docid=BYlAKe8I8A9bpM&w=256&h=256&q=green%20chck&client=firefox-b-d&ved=2ahUKEwit7qe_p7DvAhWH6qQKHRQ-B6gQMygLegUIARDYAQ


QUBO with embedding

Consider the problem with triangular topology

𝑦 = 𝑞1,2𝑥1𝑥2 +𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

What happens when a chain is created?

𝑥1 is represented by two qubits, 𝑥𝑎 and 𝑥𝑏, which 

should be equal
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QUBO with embedding
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Original QUBO 𝑦 = 𝑞1,2𝑥1𝑥2 + 𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

Embedded QUBO  𝑦′ =

xa

x3xb

x2



QUBO with embedding
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Original QUBO 𝑦 = 𝑞1,2𝑥1𝑥2 + 𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

Embedded QUBO  𝑦′ = 𝑞1,2𝑥𝑎𝑥2

xa

x3xb

x2



QUBO with embedding
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Original QUBO 𝑦 = 𝑞1,2𝑥1𝑥2 + 𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

Embedded QUBO  𝑦′ = 𝑞1,2𝑥𝑎𝑥2 + 𝑞1,3𝑥𝑏𝑥3

xa

x3xb

x2



QUBO with embedding
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Original QUBO 𝑦 = 𝑞1,2𝑥1𝑥2 + 𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

Embedded QUBO  𝑦′ = 𝑞1,2𝑥𝑎𝑥2 + 𝑞1,3𝑥𝑏𝑥3 + 𝑞2,3𝑥2𝑥3

xa

x3xb

x2



QUBO with embedding
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Original QUBO 𝑦 = 𝑞1,2𝑥1𝑥2 + 𝑞1,3𝑥1 𝑥3 + 𝑞2,3𝑥2𝑥3

Embedded QUBO  𝑦′ = 𝑞1,2𝑥𝑎𝑥2 + 𝑞1,3𝑥𝑏𝑥3 + 𝑞2,3𝑥2𝑥3 + 𝛾𝑐

xa

x3xb

x2

𝑐 = −1 + 𝑥𝑎 + 𝑥𝑏 − 2𝑥𝑎𝑥𝑏

Equality constraint



Problems with chains

For the results to be consistent all qubits belonging to the same chain must be
equal. Sometimes this may not be the case.

If the problem requires chains, some qubits will be used to represent the same
logical variables, meaning the number of “free” variables you can use on the
QPU will be smaller.

D-Wave Advantage has 5000 qubits but supports only 160 variables for fully
connected problems.
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Problems with chains

This plot shows the maximum 

number of variables that a 

fully connected problem can 

have to be embedded in a QPU 

of at most 1000 qubits.
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Open research directions

Develop new or improved QUBO formulations:

• Computational cost of computing Q
• Number of variables required (categorical, binary expansion)
• Dense Q matrix makes minor embedding more challenging
• The characteristics of Q will make the problem more or less difficult to solve

Develop algorithms for minor embedding

Develop ways to split large problems into subproblems 
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Thank you!

Any questions?
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